
Energy Storage Materials 39 (2021) 45–53 

Contents lists available at ScienceDirect 

Energy Storage Materials 

journal homepage: www.elsevier.com/locate/ensm 

Deep learning for ultra-fast and high precision screening of energy 

materials 

Zhilong Wang 

a , Qingxun Wang 

a , Yanqiang Han 

a , Yan Ma 

b , Hua Zhao 

b , Andrzej Nowak 

c , 
Jinjin Li a , ∗ 

a Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 

200240, China 
b Beijing Institute of Tracking and Telecommunications Technology, Beijing, 100094, China 
c Faculty of Chemistry, Gda ń sk University of Technology, Narutowicza 11/12, 80-233 Gda ń sk, Poland 

a r t i c l e i n f o 

Keywords: 

Multifunctional energy storage materials 
Nanostructured materials 
band gap 
Transfer learning 
ab initio calculations 

a b s t r a c t 

Semiconductor materials for energy storage are the core and foundation of modern information society and play 
important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other 
fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap 
(the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the development of new 

semiconductor materials. Since the traditional Perdew–Burke–Ernzerhof (PBE) functional not only requires a long 
calculation time, but also significantly underestimates the band gap, we developed a deep learning model that can 
predict the more precise Heyd–Scuseria–Ernzerhof (HSE06) band gaps in milliseconds for 1,503 binary metallic 
oxides, nitrides, and sulfides, with a mean absolute error (MAE) of 0.35 eV, a mean squared error (MSE) of 0.21 
eV, and a coefficient of determination (R 2 ) of 0.98. Based on transfer learning, only < 5% of the data set (64 
structures) was required to train the model and predict the band gaps of the remaining 1,439 structures. From the 
1,503 candidate materials, we quickly identified 75 carrier transport materials, 33 electrode and electrocatalytic 
materials, 299 power switching materials, and 114 sensing materials. This work is the first to demonstrate the 
feasibility of transfer learning in band gap prediction, from the low-level PBE to the high-level HSE06 calculation, 
with a computation speed at least 10 4 times faster than the ab initio calculation. The proposed method could be 
further expanded to incorporate entire organic/inorganic crystal materials databases ( > 10 6 crystals), which is 
of great significance for the screening and discovery of new semiconductor energy storage materials. 
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. Introduction 

Semiconductor energy storage materials are crucial for various elec-
ronic devices, such as p-n junctions, ultraviolet (UV) luminescence de-
ices, photocatalysts, and thin-film transistors 1–5 , which support the
odern electronic information society. Thus, the characteristic param-

ters of semiconductor materials must be meticulously and comprehen-
ively understood, particularly the band gap ( E g ) 6–9 . For example, in
erovskite solar cells (PSCs), the hole transport layer (HTL) and the
lectron transport layer (ETL) should have appropriate E g that match
he band gaps of perovskite to ensure the efficient transmission of holes
nd electrons 10 , 11 , while their E g are within the range of optimal optical
onversion efficiency (0.9–1.6 eV). E g is also an essential parameter for
etermining electronic conductivity and helps to identify more efficient
onductive materials in batteries for a wide range of applications 12 , 13 .
lectrode materials generally have high conductivity, i.e. narrow E g ,
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hile solid electrolyte materials require extremely low electronic con-
uctivity, i.e. wide E g 14–16 . In addition, one criterion for identifying
uitable sensor materials includes having a band gap with an empirical
alue of 2–4 eV. Semiconductors with larger E g have low carrier concen-
rations and are less able to absorb gas molecules, while the resistance
hange for semiconductors with a smaller band gap is imperceptible due
o the high carrier concentration 17 . 

Functional inorganic semiconductor materials have a wide range
f applications in energy systems. Specifically, binary metallic oxides,
itrides, and sulfides are often used as HTL/ETL in PSCs 18–21 , elec-
rode materials 14 , 15 , 22 , power switch materials 23–25 , and sensing ma-
erials 26–29 , because of their excellent semiconductor characteristics.
hang et al . have used Co 3 O 4 -based oxides with an E g of 1.51 eV (in
he visible wavelength range of 0.9–1.6 eV) as HTL in organometal-
ic halide MAPbI 3 and (FASnI 3 ) 0.6 (MAPbI 3 ) 0.4 PSCs, achieving approxi-
ately 14% and 7% power conversion efficiencies, respectively 11 . Fur-

hermore, III-nitride semiconductors such as InN and AlN have been
l 2021 
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ntensively investigated for optoelectronics applications owing to their
uitable band gaps 30 , 31 . Ga 2 O 3 is emerging as an interesting semicon-
uctor for high-power electronics and solar-blind ultraviolet photode-
ectors, because of its ultrawide band gap (~5.0 eV) 24 , 32 . In addition,
he narrow band gap porous Mn 2 O 3 and 𝛼-MnO 2 have been used as elec-
rode materials 16 . At 3.0 eV, the wide E g of MoO 3 is a significant reason
or the widespread application of MoO 3 in the field of sensors, because
f its ability to adsorb gas molecules 33 . Thus, accurately determining
he E g is the key to selecting and accelerating the development of new
emiconductor materials. 

On the experimental side, through a complex and costly process,
 g can be measured by diffuse reflectance, surface photovoltage, UV-
is measurements, etc., but it is impractical to synthesize and mea-
ure all the candidate materials experimentally. Density functional the-
ry (DFT) computations have been widely used to determine the elec-
ronic structures of thousands of solids 34–36 . However, employing stan-
ard semi-local exchange-correlation functionals such as the Perdew–
urke–Ernzerhof (PBE) functional is well known to underestimate the
 g substantially 3 , 37 . Beyond conventional DFT, more expensive meth-
ds such as hybrid functional calculations (Heyd–Scuseria–Ernzerhof,
SE06) 38–40 and GW-type methods 41 demonstrably improve the calcu-

ation accuracy. However, these methods are not currently amenable to
igh-throughput computation, because of their excessive computational
ost. Machine learning (ML), a research trend and a high-efficiency tech-
ique used in material data engineering 42–49 , can circumvent many ob-
tacles in using DFT for estimating E g . For example, Zhuo et al . applied
upport vector regression (SVR) to predict the experimental E g based on
hemical compositions, resulting in a root-mean-square error (RMSE)
f 0.45 eV 

37 . Grossman et al . developed a crystal graph convolutional
ig. 1. Framework of DL model. a Collection of materials, where a total of 1,503 c
reated by training the CGCNN model from scratch (CGCNN-FS). C The HSE06 ban
earning (CGCNN-TL). d Screening of candidate energy materials for further applicat

46 
eural network (CGCNN) to predict the E g at PBE level based on crys-
al materials from the Materials Project 50 . Moreover, Shi et al. reviewed
he typical mode and basic procedures for applying ML in more mate-
ial property prediction 51 , 52 , providing guidance for the discovery and
esign of energy materials. In short, some of these previous ML mod-
ls did not consider the crystal structure, and some were trained based
n the PBE functional. The scarcity of high-precision band gap data set
i.e., at HSE06 or GW level) limits the ability to accurately predict the E g 
or a wide range of materials. Recently, transfer learning (TL) has been
ntensively explored by scientists in the field of chemical engineering
nd materials science, which has good applications in overcoming the
roblem of data scarcity 53 , 54 . 

Here, we reported a deep learning strategy that can predict the band
aps of binary metallic oxides, nitrides, and sulfides at the HSE06 level
n milliseconds. The chosen data set included 1,503 semiconductor ma-
erials taken from the Materials Project 55 . Based on the CGCNN model,
 prediction model of the PBE band gap was obtained by training from
cratch (CGCNN-FS), resulting in a mean absolute error (MAE) of 0.37
V, a mean squared error (MSE) of 0.35 eV, and a coefficient of determi-
ation (R 

2 ) of 0.89. From the 1,503 candidate materials, we calculated
he band gaps of 64 (less than 5% of the data set) randomly selected
tructures using the high-precision HSE06 functional. Then we estab-
ished a transfer learning model for rapid prediction of HSE06 band gap
alues based on these 64 data points, with a MAE of 0.35 eV, a MSE of
.21 eV, and a R 

2 of 0.98. Finally, the band gaps of 1,503 semiconduc-
ors were predicted at the HSE06 level by the CGCNN-TL model with a
omputation speed at least 10 4 times faster than the traditional ab initio

ethod. This work is the first to demonstrate the feasibility of transfer
earning in band gap prediction, from the low-level PBE functional to
rystal structures make up the data set. b The PBE band gap prediction model 
d gap prediction model created by training the CGCNN model with transfer 

ions using the more accurate, high-level HSE06 band gap predictions. 
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he high-level HSE06 functional, and does not require large amounts
f data. Importantly, according to the HSE06 band gap predictions, we
dentified 75 materials with band gaps in the visible wavelength region
f 0.9–1.6 eV, which may be potential transport layer materials for PSCs;
3 materials with band gaps less than 0.9 eV, as the promising electrode
nd electrocatalytic materials; 299 materials with band gaps more than
.0 eV, providing new bipolar oxide switch materials capable of manag-
ng large amounts of power or electrolyte materials; and 114 materials
ith band gaps around 3.0 eV, which may be explored as superior sens-

ng materials. The method proposed in this paper is not only applicable
o the screening of semiconductor materials, but also can be expanded
o include more organic/inorganic databases for qualitative screening
f the same type of materials (including band gap prediction, structural
tability prediction, etc.), which is of great significance for the discovery
f new materials. 

. Results and discussion 

.1. Deep learning (DL) framework 

The deep learning process for this work is presented in Fig. 1 , in-
luding the collection of material datasets ( Fig. 1 a ), the establishment of
he CGCNN model based on training from scratch (CGCNN-FS, Fig. 1 b ),
ne-tuning the CGCNN model based on transfer learning (CGCNN-TL,
47 
ig. 1 c ), and selecting candidate materials for potential applications
 Fig. 1 d ). In this process, a total of 1,503 crystal materials, making
p of all the binary metal oxides, nitrides, and sulfides, were collected
rom the Materials Project database. The crystal structures and the cor-
esponding PBE band gaps of these 1,503 materials were described in
he Methods section. In Fig. 1 b , the crystal materials were converted
nto graph vectors based on their atomic information and crystal struc-
ures. The prediction model for the PBE band gaps was developed using
he CGCNN-FS model, which included input layer, convolutional layers,
ooling layers, fully connected layers, and output layer). The CGCNN-FS
as trained from scratch; that is, the parameters of the network were

andomly initialized. From the 1,503 crystal materials, 64 structures (a
ingle batch size, accounting for < 5% of the total data set) were ran-
omly selected and their band gap values were calculated at the HSE06
evel, creating the data set for the CGCNN-TL model. In Fig. 1 c , the
etwork parameters of the CGCNN-FS were used as the starting point
or the CGCNN-TL model. After fixing some of the network parameters,
he prediction model for the HSE06 band gap values was obtained af-
er fine-tuning the remaining network parameters. More details about
GCNN architecture and hyper-parameters were provided in the sec-
ion of Methods. The well-trained CGCNN-TL model was then employed
o predict the HSE06 band gap values of all 1,503 materials with high
recision, providing a reference for further screening and searching for
dvanced semiconductor energy storage materials, as shown in Fig. 1 d .
Fig. 2. Performance of the CGCNN-FS model with the training set, 
validation set, and testing set. a, c, e Correlation plots between the 
established PBE band gap values (taken from the Materials Project) 
and the band gap values predicted by the CGCNN-FS model with the 
training set, validation set, and testing set, respectively. b, d, f Sta- 
tistical histograms of the difference in band gap values between the 
CGCNN-FS predictions and each data set. 
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Table 1 

The data sets, MAEs, MSEs and R 2 of the CGCNN-FS model and CGCNN-TL model, including the training, validation, and testing stages. 

Training Validation Testing 

Data MAE (eV) MSE (eV) R 2 Data MAE (eV) MSE (eV) R 2 Data MAE (eV) MSE (eV) R 2 

CGCNN-FS 1203 0.20 0.09 0.96 150 0.37 0.40 0.84 150 0.37 0.35 0.89 

CGCNN- 

TL 

52 0.44 0.30 0.94 6 0.32 0.22 0.72 6 0.32 0.13 0.99 

52 0.38 0.20 0.96 6 0.34 0.17 0.97 6 0.37 0.21 0.98 

52 0.44 0.27 0.92 6 0.35 0.19 0.95 6 0.35 0.28 0.98 

Average a 0.42 0.26 0.94 0.34 0.19 0.88 0.35 0.21 0.98 

a The average of training, validation and testing of CGCNN-TL model 
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Fig. 3. Comparison of accuracy and computation speed. a PBE and HSE06 band 
gap values of the selected 64 structures and the difference between them (PBE - 
HSE06). b Comparison of calculation time for the PBE functional, HSE06 func- 
tional, and CGCNN (FS and TL) predictions. 
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.2. PBE band gap prediction based on CGCNN-FS 

As a popular deep learning method, CGCNN has been increasingly
pplied to structure-property prediction for periodic crystal systems 50 .
n this work, 1,503 crystal materials were selected according to their
tomic information and crystal structures and converted into graph vec-
ors. These vectors were used as the input of CGCNN with the PBE band
ap values as the output. Before training, the hyper-parameters of the
GCNN were randomly initialized, which was trained from scratch, or
GCNN-FS for short. In the CGCNN-FS model, as shown in Fig. 1 b , there
ere three types of network structures: the convolutional layers, the
ooling layers, and the fully connected layers. The convolutional lay-
rs were used to learn the atomic feature vectors from the input data
y iteratively incorporating the surrounding environment of each atom.
he pooling layers were used to produce the overall feature vectors for
he crystal structures that satisfied the permutational invariance of the
tomic indices and the size invariance of the unit cell. In addition to the
onvolutional and pooling layers, two hidden, fully connected layers
ere added to capture the complex mapping between the crystal struc-

ures and band gaps. Finally, the output layer, which was connected to
he second hidden layer, predicted the band gaps. 

In order to evaluate the generalization ability of the model, espe-
ially to avoid overfitting phenomenon, the dataset was divided into a
raining set, a validation set, and a testing set at a ratio of 1203:150:150
approximate 8:1:1; see Table 1 ). The optimal hyper-parameters were
elected based on minimizing the error compared to the validation set.
fter optimization, the model was used to predict the band gap values

or the testing set. Fig. 2 shows the performance of the CGCNN-FS model
ith the training set, validation set, and testing set. Fig. 2 a shows the

orrelation plot between the established PBE band gap values (taken
rom the Materials Project database and based on DFT) and the pre-
icted band gaps from the CGCNN-FS for the training set. The plot indi-
ates that the data points are evenly distributed along the diagonal with
 coefficient of determination (R 

2 ) of 0.96. Fig. 2 b shows the statisti-
al histogram of the gap differences, where the deviations are almost
ll concentrated at approximately 0 eV. Fig. 2 c-d show the correlation
lots of the validation and testing sets, where the predicted band gaps
re also consistent with the values obtained from the Materials Project,
chieving an R 

2 of 0.84 for the validation set and 0.89 for the testing
et. Fig. 2 shows that the band gap values predicted by the CGCNN-FS
re in good agreement with the DFT calculations, without systematic
ver- or underestimation. To reflect the actual prediction error between
he DFT calculations and the CGCNN-FS predictions, we calculated the
ean absolute error (MAE) and mean squared error (MSE), as shown in
able 1 . The MAE of the training set, validation set, and testing set are
.20 eV, 0.37 eV, and 0.37 eV, respectively, and the MSE of the training
et, validation set, and testing set were 0.09 eV, 0.40 eV, and 0.35 eV,
espectively. In addition, very few data points that are off the base line
re inevitable but acceptable. Such low error values indicate that the
elationship between the 1,503 crystal structures and their band gaps
as well learned by the CGCNN-FS, and the complex DFT calculation

an effectively be avoided at the prediction stage. The distribution of
BE band gaps of 1,503 semiconductor materials is shown in Fig.S1 in
upplementary Materials (SM). 
48 
Through the above data analysis, the PBE band gap prediction model,
GCNN-FS, was determined to be well trained. The hyper-parameters

rom the neural network were used as the initial points of the HSE06
and gap prediction model, CGCNN-TL. In other words, the hyper-
arameters for the CGCNN-TL model were not initialized randomly.
ext, these parameters were fine-tuned based on the HSE06 band gap
ata set through the training, validation, and testing stages to obtain a
ell-trained transfer learning model. 

.3. HSE06 band gap prediction based on CGCNN-TL 

To obtain a HSE06 band gap prediction model, we randomly selected
4 crystal structures (the size of a single batch for the CGCNN-FS model),
ccounting for approximately 4.26% of the 1,503 total structures, and
hen calculated their HSE06 band gaps using high-throughput calcula-
ions. Fig. 3 a shows the PBE and HSE06 band gaps of the 64 structures.
he HSE06 band gap values are generally larger than the PBE values,
ith most of the differences (PBE minus HSE06, the red squares) con-

entrating between 0 eV and − 2.0 eV. These results are consistent with
he conclusion that the PBE functional significantly underestimates the
and gap values. The HSE06 method has the advantage of high precision
n calculating the band gap values, but its high computational cost is a
arrier to wide adoption. Fig. 3 b shows a comparison of the calculation



Z. Wang, Q. Wang, Y. Han et al. Energy Storage Materials 39 (2021) 45–53 

Fig. 4. Performance of the CGCNN-TL model in three in- 
dependent tests, including the training set, validation set, 
and testing set. a, c, e. The correlation plots between the 
HSE06 band gap values (calculated by DFT) and the pre- 
dicted values from the CGCNN-TL model using the train- 
ing set, validation set, and testing set, respectively. b, d, f 

Statistical histograms of the difference between the band 
gap values. 
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ime for the 64 selected structures, based on the PBE functional, HSE06
unctional, and CGCNN (FS and TL) predictions, represented by purple
quares, blue triangles, and red dots, respectively. The green shadow in
ig. 3 b indicates that the calculation speed for HSE06 values is at least
3 times slower than that of PBE, while the yellow shadow indicates that
he calculation speed for HSE06 values is at most 12,497 times slower
han that of PBE. 

The 64 structures with their corresponding HSE06 band gap values
ere used as the dataset, and the well-trained CGCNN-FS model was
sed to fine-tune the parameters of the CGCNN-FS model with TL tech-
ology to obtain the CGCNN-TL model. In the CGCNN-TL model, the net-
ork architecture was the same as in the CGCNN-FS model, but the way

hat neurons updated in the network was different. Only a few hyper-
arameters in the network that needed to be adjusted since a number
f parameters were fixed when using only 64 structures (see more de-
ails in Methods). Because the 64 structures were selected from the total
ata set of 1,503 structures, the overall feature vectors for the crystal
tructures calculated by the convolutional layers and the pooling layers
ere exactly the same. Thus, the parameters of the CGCNN-FS model
ere taken as the initial point of the CGCNN-TL model, and the param-

ters inside the convolutional layers, pooling layers, and full connection
ayers were fixed (meaning they do not change with iteration). Only the
arameters between the pooling layer and the first full connection layer,
49 
he second full connection layer, and the output layer were fine-tuned
uring the training process (as shown in Fig. 1 c ). The distributions of
BE and HSE06 band gaps of selected 64 semiconductor materials are
hown in Fig.S2 and Fig.S3 in SM, respectively. 

Fig. 4 shows the performance of the CGCNN-TL model. With the rela-
ively small data set to prevent overfitting, we performed three indepen-
ent and strict validations and tests. We divided the data set three times
ccording to the ratio of 8:1:1, and conducted three rounds of training,
alidation, and testing. Fig. 4 a shows the performance of the model dur-
ng the first independent test. The predicted values in the training set,
alidation set, and testing set are evenly distributed along the diago-
al, with R 

2 values of 0.94, 0.72, and 0.99, respectively (see Table 1 for
ore details). The statistical histograms of the difference in the band

ap values are presented in Fig. 4 b, showing that the deviations are al-
ost all concentrated around 0 eV. Similarly, Fig. 4 c - f also show this
henomenon in the results of the second and third independent tests.
urthermore, as shown in Table 1 , the MAE for the testing sets of the
hree independent tests are 0.32, 0.37, and 0.35 eV, with an average
AE of 0.35 eV; and the MSE for the testing sets of the three indepen-

ent tests are 0.13, 0.21, and 0.28 eV, with an average MSE of 0.21
V; the R 

2 values for the results of the testing sets are 0.99, 0.98, and
.98, with an average R 

2 of 0.98. From the correlation plots in Fig. 4 ,
hese 64 HSE06 band gaps are concentrated between 2–5 eV. Thus, the
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Fig. 5. Predicted HSE06 band gap values for all 1,503 crystal materials. a Comparison of the HSE06 PBE band gap values. b Statistical distribution plots of the 
HSE06 and PBE band gaps. 
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henomenon that the datasets with the band gap smaller than 1.0 eV
ystematically deviates from the correlation line may be caused by the
neven band gap distribution. However, in terms of MAE and MSE, as
ell as the statistical histogram in Fig. 4 , these abnormal data have lit-

le predictive effect on the overall results. Considering the importance
f band gap values of these data points for energy materials, we did
ot exclude them. The above analysis indicates that the HSE06 band
ap values predicted by the CGCNN-TL model are consistent with the
FT calculations using the HSE06 functional. Importantly, our three

ndependent validations and tests (totally 36 data points) demonstrate
he reliability of the transfer learning model even when data sets are
carce. 

In addition, we compared the computation time for the CGCNN-TL
odel and the HSE06 calculations. In Fig. 3 , the blue shadow indicates

hat the HSE06 calculation speed is at least 29,880 times (~10 4 ) slower
han the CGCNN-TL prediction time, while the red shadow indicates
hat the HSE06 calculation time is at most 17,348,448 times (~10 8 )
lower than the CGCNN-TL prediction time. These results show that the
ell-trained CGCNN-TL model can be used for the ultra-fast prediction
f HSE06 band gap values, ensuring high prediction accuracy with a
reatly shortened computation time. 

.4. Candidate materials in energy systems 

By employing the well-trained CGCNN-TL model, the HSE06 band
ap values of the remaining 1,439 crystal materials, including all the
inary metallic oxides, nitrides, and sulfides, can be predicted in mil-
iseconds. Fig. 5 a shows the predicted HSE06 band gap values from the
GCNN-TL model as well as the PBE band gaps. The majority of the
SE06 band gap values are larger than the PBE band gaps. The statisti-
al distributions of the HSE06 and PBE band gap values are plotted in
ig. 5 b , showing significant distribution shifts. This work is effectively
Table 2 

Screened new binary semiconductor materials and th
with band gaps of 0.9–1.6 eV are available for carrie
gaps of about 3.0 eV are available for sensing mater
than 4.0 eV has potential applications in power swit

Band gap (HSE06) No. of screened materials Pote

0.9-1.6 eV 75 Carr

< 0.9 eV 33 Elec

> 4.0 eV 299 Pow

~ 3.0 eV 114 Sens

50 
 precise update to the band gap values for the 1,503 crystalline mate-
ials since the HSE06 calculations are generally considered the closest
o experimental results 38 , 39 , 56–59 . In semiconductor structures, different
aterial band gap values correspond to different research applications.

or example, potential carrier transport layer materials for PSCs require
and gaps in the visible wavelength range of 0.9–1.6 eV, electrode mate-
ials require narrow band gaps (less than 0.9 eV), well-performed sensi-
ive materials have band gap values of 2.0–4.0 eV, and some high-power
onversion devices require a very wide band gap greater than 4.0 eV. 

Among the 1,503 materials, 75 are identified to have band gaps in
he visible wavelength range of 0.9–1.6 eV, which could be potential
ransport layer materials for PSCs; 33 have band gaps less than 0.9 eV,
hich are promising electrode and electrocatalytic materials; 299 have
and gaps greater than 4.0 eV, providing a new opportunity for using
ipolar oxide materials as switches to manage large amounts of elec-
rical energy; and 114 have band gaps of approximately 3.0 eV, which
ay be further explored as superior sensing materials. The candidate
aterials are listed in Table 2 . The corresponding IDs, chemical for-
ulas, PBE band gap values, the predicted HSE06 band gap values for

he 75 candidate materials (with band gaps between 0.9 and 1.6 eV),
he 33 candidate materials (with band gaps less than 0.9 eV), the 299
andidate materials (with band gaps more than 4.0 eV), and the 114
andidate materials (with the band gaps around 3.0 eV) are listed in
able 3 , Table S1-S3 of SM, respectively. From these four tables, there
re large differences between PBE and HSE06 band gap values for some
aterials, for example, see N-243, O-585, S-168, N-57, and O-861 in
able 3 . This suggests that the traditional PBE band gap calculation can
roduce forecasting errors, which may hinder the development of and
pplication for some semiconductor materials. The crystallographic in-
ormation files (CIFs) and the corresponding PBE (taken from the MP
atabase) and HSE06 (predicted in this work) band gaps of all 1,503
rystal materials are provided in the SM. 
eir potential applications, where 75 structures 
r transport materials, 114 structures with band 
ials, and 299 structures with band gaps larger 
ch materials. 

ntial application 

ier transport material, photocatalyst, etc. 

trode materials, electro-catalysts, etc. 

er switch materials, electrolyte materials, etc. 

ing material, etc. 
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Table 3 

The IDs, chemical formulas, PBE band gaps, and HSE06 band gaps for the 75 candidate materials. The predicted HSE06 
band gaps of these materials are in the visible wavelength range of 0.9–1.6 eV, which indicates that they may be potential 
carrier transport layer materials in PSCs. 

ID Chemical formula PBE E g (eV) HSE06 E g (eV) ID Chemical formula PBE E g (eV) HSE06 E g (eV) 

N-243 Cu 3 N 0.19 1.36 O-658 FeO 2 0.87 1.02 

N-442 AgN 3 1.67 1.43 O-660 Fe 2 O 3 1.42 1.11 

N-488 HfN 2 1.39 1.07 O-662 Fe 2 O 3 1.00 0.96 

N-529 WN 2 0.57 1.04 O-665 Fe 2 O 3 0.26 1.13 

N-534 WN 2 0.15 0.93 O-672 FeO 0.45 1.35 

N-546 WN 2 0.17 1.05 O-680 Fe 2 O 3 1.08 1.29 

N-57 Ti 19 N 25 0.01 1.30 O-696 Fe 2 O 3 1.39 0.98 

N-68 TiN 0.01 1.13 O-701 Fe 2 O 3 1.12 1.11 

N-70 Ti 3 N 4 0.10 1.17 O-704 FeO 2 0.95 1.10 

O-1336 W 3 O 8 1.70 1.58 O-707 Fe 7 O 9 1.14 1.17 

O-1339 WO 2 1.25 1.10 O-716 Fe 2 O 3 0.18 1.04 

O-1373 W 3 O 8 0.73 1.53 O-718 Fe 2 O 3 0.27 1.26 

O-1381 W 2 O 3 0.02 1.25 O-733 Fe 43 O 64 0.77 0.95 

O-1383 WO 2 1.73 1.54 O-739 Fe 2 O 3 0.12 1.23 

O-1396 WO 2 2.23 1.41 O-743 Fe 2 O 3 1.41 1.18 

O-1397 WO 2 1.40 1.22 O-744 Fe 2 O 3 2.02 0.95 

O-1408 WO 2 1.40 1.41 O-758 Fe 2 O 3 1.49 0.93 

O-1409 WO 2 1.61 1.56 O-772 CoO 0.22 1.52 

O-1412 WO 2 2.47 1.46 O-776 CoO 0.35 1.57 

O-1416 W 3 O 8 1.82 1.55 O-784 Co 29 O 40 0.26 1.40 

O-1464 HgO 1.19 1.34 O-786 Co 23 O 32 0.30 1.59 

O-1468 HgO 1.20 1.31 O-796 CoO 0.27 1.47 

O-1469 HgO 1.30 1.35 O-808 CoO 0.26 1.41 

O-1470 HgO 1.24 1.29 O-816 Co 2 O 3 0.15 0.98 

O-407 VO 0.81 1.45 O-861 CuO 0.15 1.39 

O-531 Cr 3 O 4 0.97 1.20 O-882 CuO 0.01 1.39 

O-539 Cr 2 O 3 2.43 1.52 O-939 Rb 2 O 2 0.01 1.41 

O-543 CrO 0.17 1.45 S-158 Fe 7 S 12 0.17 1.59 

O-545 Cr 2 O 3 2.13 1.51 S-168 FeS 2 0.46 1.58 

O-552 Cr 2 O 3 1.77 1.57 S-172 Fe 3 S 4 0.00 1.53 

O-561 CrO 0.50 1.22 S-182 Fe 7 S 8 0.02 1.11 

O-567 CrO 0.34 1.09 S-225 Cu 2 S 0.12 1.11 

O-570 CrO 2 0.34 1.60 S-505 RuS 2 0.67 1.53 

O-584 Cr 9 O 13 0.61 1.17 S-507 Rh 2 S 3 0.42 1.03 

O-585 Cr 5 O 7 0.78 1.17 S-508 Rh 2 S 3 0.19 1.17 

O-590 Cr 2 O 3 0.59 1.19 S-635 HgS 1.70 1.37 

O-652 Fe 2 O 3 1.54 0.99 S-639 HgS 1.68 1.37 

O-657 Fe 2 O 3 0.14 1.40 

3
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. Conclusions 

As an important feature of semiconductor, band gap is difficult to be
ccurately measured due to the long experimental period and high com-
utational cost. In this work, we developed a deep learning model that
an perform ultra-fast predictions of the band gaps at the HSE06 level
n milliseconds for all the binary metallic oxides, nitrides, and sulfides.
he data set we used was taken from the Materials Project database and

ncluded the structures for 1,503 semiconductors and their band gap
alues at the PBE functional level. The well-trained CGCNN-FS model
redicted the PBE band gap at the PBE level with a MAE of 0.37 eV, a
SE of 0.35 eV, and a R 

2 of 0.89. We then randomly selected 64 struc-
ures ( < 5% of the data set) from the 1,503 semiconductors learned by
he CGCNN-FS model and calculated their HSE06 band gap values. Us-
ng the TL strategy, we quickly trained the CGCNN-TL model with these
4 structures, achieving a MAE of 0.35 eV, a MSE of 0.21 eV, and a
 

2 of 0.98. Finally, the well-trained CGCNN-TL model was used to pre-
ict the band gap values of the 1,503 semiconductor materials at the
igh-precision HSE06 level with a computation speed at least 10 4 times
aster than the traditional calculation method. Importantly, based on the
redicted HSE06 band gaps, we identified several semiconductor mate-
ials with potential applications to various fields that might have been
gnored by the traditional PBE band gap predictions. For example, we
ound 75 materials with band gaps in the visible wavelength range of
.9–1.6 eV, which might have potential as transport layer materials for
SCs. 33 materials had band gap less than 0.9 eV that were promising
lectrode and electrocatalytic materials. We also identified 299 semi-
51 
onductor materials with band gaps greater than 4.0 eV, which might
rovide a new opportunity for using bipolar oxide materials as switches
o manage a large amount of electrical energy and high-power electrons,
nd for solar-blind ultraviolet photodetectors. Moreover, at a band gap
f approximately 3.0 eV, we found 114 structures that might be supe-
ior sensing materials. Table S4 in SM lists the IDs, chemical formulas,
BE band gaps and the predicted HSE06 band gaps in this work of all
503 materials. The deep learning method proposed in this paper can
ot only provide high-precision electronic characteristic parameters of
orresponding materials, but also provide a prediction method that can
redict high-precision HSE06 band gap values of more materials within
illiseconds. Although the deep learning method proposed in this pa-
er still has inevitable errors, the errors can be further reduced if more
ffective data and new algorithms are incorporated in the future. 

In summary, this work is the first to demonstrate the feasibility of
ransfer learning for band gap prediction, from the low-precision PBE
unctional to the high-precision HSE06 functional, and does not require
arge amounts of data. The CGCNN-TL model developed in this study
as overcome the issues of low precision or overfitting caused by small
atasets, and could play a powerful role in remedying the lack of data
aused by inaccessible data sets. The entire materials database contains
housands of materials, including many organic and inorganic crystals.
owever, these structures are underutilized, and might be overlooked
y researchers in relevant fields, thus affecting the development of new
aterials. 

In addition, the proposed model can not only quickly and accurately
dentify binary semiconductor materials with potential applications in
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nergy systems, but also expand the material database to include more
rganic/inorganic crystal structures (rather than just binary oxides, ni-
rides, and sulfides). Researchers can use all available material databases
s datasets, including their own crystal structures and PBE band gaps,
nd then extract a small fraction of these structures (likely 10%–20%)
o calculate their HSE06 band gaps. The transfer from PBE to HSE band
aps can be achieved by using the method presented in this paper. In ad-
ition, the method can also predict many properties of materials, such
s stability, mechanical properties, optical properties, etc. Taking the
creening of semiconductor materials as an example, the model pro-
osed in this study can provide strong guidance for experiments and has
ar-reaching significance for the identification of other new materials. 

. Methods 

.1. Data sets 

The data set used in this work was taken from the Materials Project 55 

nd contained all the binary metallic oxides, nitrides, and sulfides,
overing a variety of crystal structures (Cmmm, P6 3 /mmc, I4/m, …,
6 3 mc), with 2,877 crystal structures in total. In this work, we focused
n high-precision band gap prediction; thus 1,503 semiconductor mate-
ials ( E g > 0) were selected, and their band gaps, ranging from approx-
mately 0 to 8 eV (see Fig. S1 for more information), were calculated
y using the PBE method. Among these semiconductor materials, there
re 979 oxides, 356 sulfides, and 168 nitrides and these materials con-
ain many metal elements (Al, Zr, K, Ti, …, Y). All of the data can be
ownloaded using the Materials API Pymatgen 60 . In the transfer learn-
ng process, we randomly selected 64 structures (the size of a single
atch), including 44 oxides, 12 sulfides, and 8 nitrides, and calculated
heir band gaps using the HSE06 method. The distribution of the PBE
nd HSE06 band gap values is shown in Fig. S2-3. In order to make the
ata easier to query, and to uniquely encode each crystal material dur-
ng training, the 1,503 semiconductor materials were tagged by type
nd numbered sequentially, for example, oxides O-1, …, O-979. The
rystallographic information files (CIFs) are provided in the SM. 

.2. CGCNN model 

Crystal graph convolutional neural network (CGCNN) is a popular
ethod of machine learning and has been increasingly applied to the

asks of structure-property prediction in periodic crystal systems 50 . In
he crystal graph, each node i was represented by a feature vector v i ,
ncoding the property of the atoms corresponding to node i . Similarly,
ach edge ( i , j ) k , represented by u ( i, j ) k , denoted the k th bond connect-
ng atom i and atom j . 

The convolutional layers iteratively updated the atomic feature vec-
or v i by incorporating neighboring atoms and bonds using the nonlinear
raph convolution function: 

 

( 𝑡 +1 ) 
𝑖 

= 𝐶𝑜𝑛𝑣 

(
𝒗 
( 𝑡 ) 
𝑖 
, 𝒗 

( 𝑡 ) 
𝑗 
, 𝒖 ( 𝑖, 𝑗 ) 𝑘 

)
(1)

To obtain the feature vector 𝑣 ( 𝑅 ) 
𝑖 

for each atom. The pooling layer
as used to produce an overall feature vector v c for the crystal (or de-

criptors), which was represented by the pooling function: 

 𝑐 = 𝑃 𝑜𝑜𝑙 

(
𝒗 
( 0 ) 
0 , 𝒗 

( 0 ) 
1 , … , 𝒗 

( 0 ) 
𝑁 

, … , 𝒗 
( 𝑅 ) 
𝑁 

)
. (2)

Then, the overall feature vectors were served as inputs of full con-
ection neural network layers. More details for constructing crystal
raphs were provided in Note. S1. To choose suitable hyper-parameters
o obtain the best model and prevent overfitting, we applied a train-
alidation scheme to optimize the prediction of the crystal formation
nergy. The data set was divided randomly into a training set (80% of
he data), validation set (10%), and test set (10%). Next, models with
ifferent hyperparameters were trained with the training set via opti-
izers, with a learning rate of 0.01, the number of hidden atomic fea-

ures in convolutional layer at 64, the number of hidden features after
52 
ooling at 64, the number of convolution layers at 2, and the number
f hidden layers after pooling at 2. For the CGCNN-FS model, the batch
ize was set to 64, and at 10 for the CGCNN-TL. The resulting neural
etwork weights were used to predict the properties of crystals in the
alidation set. Finally, the best model was used to predict the values for
he testing set. 

Furthermore, since the 64 structures were selected from the total
ata set of 1,503 structures, the overall feature vectors for the crystal
tructures calculated by the convolutional layers and the pooling layers
ere exactly the same. Thus, the parameters of the CGCNN-FS model
ere taken as the initial point of the CGCNN-TL model, and the pa-

ameters inside the convolutional layers and pooling layers were fixed
meaning they do not change with iteration). At the same time, to avoid
verfitting among thousands of parameters in the training full connec-
ion layers, we also fixed the parameters of full connection layer, thus
nly the parameters between the pooling layer, the first full connection
ayer, the second full connection layer, and the output layer are fine-
uned during the training process (as shown in Fig. 1 c ). 

.3. DFT details 

All DFT calculations were conducted using the Vienna Ab initio
imulation Package (VASP) 61 . For the optimization of the geometric
tructure, the projected augmented wave (PAW) method 62 , 63 was ap-
lied to describe ion–electron interactions along with the PBE exchange-
orrelation function within the generalized gradient approximation
GGA) 64 . For the electronic structure calculations, the nonlocal screened
oulomb potential hybrid density HSE06 functional was performed on
he smaller dataset 38 , 39 . In all calculations, the DFT-D3 method was em-
loyed for the van der Waals correction 65 , 66 . The cutoff energy for the
lane-wave basis was set as 500 eV 

67 , 68 . The structure optimization pro-
ess ran until an energy convergence threshold of 10 − 5 eV and atomic
orce less than 0.05 eV/Å was reached. As for the materials that can
orm a variety of crystal structures, the Brillouin zone integration was
erformed using a Monkhorst-Pack mesh that referred to the Materials
roject calculations. 
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tudy are available from the Supplementary Materials and Materials
roject (https://www.materialsproject.org). 
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